欢迎访问七七范文网!

高中数学教案大全

安卓范文 分享 时间: 加入收藏 我要投稿 点赞

通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。一起看看高中数学教案大全!欢迎查阅!

高中数学教案大全1

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式、组合数的性质用组合数与排列数之间的关系;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

(4)通过对排列、组合问题求解与剖析,培养学生学习兴趣和思维深刻性,学生具有严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是组合的定义、组合数及组合数的公式,组合数的性质。难点是解组合的应用题。突破重点、难点的关键是对加法原理与乘法原理的掌握和应用,并将这两个原理的基本思想贯穿在解决组合应用题当中。

组合与组合数,也有上面类似的关系。从n个不同元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中任取m个元素的一个组合。所有这些不同的组合的个数叫做组合数。从集合的角度看,从n个元素的有限集中取出m个组成的一个集合(无序集),相当于一个组合,而这种集合的个数,就是相应的组合数。

解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘).

三、教法设计

1.对于基础较好的学生,建议把排列与组合的概念进行对比的进行学习,这样有利于搞请这两组概念的区别与联系.

2.学生与老师可以合编一些排列组合问题,如“45人中选出5人当班干部有多少种选法?”与“45人中选出5人分别担任班长、副班长、体委、学委、生委有多少种选法?”这是两个相近问题,同学们会根据自己身边的实际可以编出各种各样的具有特色的问题,教师要引导学生辨认哪个是排列问题,哪个是组合问题.这样既调动了学生学习的积极性,又在编题辨题中澄清了概念.

为了理解排列与组合的概念,建议大家学会画排列与组合的树图.如,从a,b,c,d 4个元素中取出3个元素的排列树图与组合树图分别为:

排列树图

由排列树图得到,从a,b,c,d 取出3个元素的所有排列有24个,它们分别是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

组合树图

由组合树图可得,从a,b,c,d中取出3个元素的组合有4个,它们是(abc),(abd),(acd),(bcd).

从以上两组树图清楚的告诉我们,排列树图是对称的,组合图式不是对称的,之所以排列树图具有对称性,是因为对于a,b,c,d四个字母哪一个都有在第一位的机会,哪一个都有在第二位的机会,哪一个都有在第三位的机会,而组合只考虑字母不考虑顺序,为实现无顺序的要求,我们可以限定a,b,c,d的顺序是从前至后,固定了死顺序等于无顺序,这样组合就有了自己的树图.

学会画组合树图,不仅有利于理解排列与组合的概念,还有助于推导组合数的计算公式.

3.排列组合的应用问题,教师应从简单问题问题入手,逐步到有一个附加条件的单纯排列问题或组合问题,最后在设及排列与组合的综合问题.

对于每一道题目,教师必须先让学生独立思考,在进行全班讨论,对于学生的每一种解法,教师要先让学生判断正误,在给予点播.对于排列、组合应用问题的解决我们提倡一题多解,这样有利于培养学生的分析问题解决问题的能力,在学生的多种解法基础上教师要引导学生选择方案,总结解题规律.对于学生解题中的常见错误,教师一定要讲明道理,认真分析错误原因,使学生在是非的判断得以提高.

4.两个性质定理教学时,对定理1,可以用下例来说明:从4个不同的元素a,b,c,d里每次取出3个元素的组合及每次取出1个元素的组合分别是

这就说明从4个不同的元素里每次取出3个元素的组合与从4个元素里每次取出1个元素的组合是—一对应的.

对定理2,可启发学生从下面问题的讨论得出.从n个不同元素 , ,…, 里每次取出m个不同的元素( ),问:(1)可以组成多少个组合;(2)在这些组合里,有多少个是不含有 的;  (3)在这些组合里,有多少个是含有 的;(4)从上面的结果,可以得出一个怎样的公式.在此基础上引出定理2.

对于 ,和 一样,是一种规定.而学生常常误以为是推算出来的,因此,教学时要讲清楚.

教学设计示例

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

【例题示范 探求方法】

(教师活动)打出字幕,给出示范,指导训练.

[字幕]例1 列举从4个元素 中任取2个元素的所有组合.

例2 计算:(1) ;(2) .

(学生活动)板演、示范.

(教师活动)讲评并指出用两种方法计算例2的第2小题.

[字幕]例3 已知 ,求 的所有值.

(学生活动)思考分析.

解 首先,根据组合的定义,有

其次,由原不等式转化为

解得 ②

综合①、②,得 ,即

[点评]这是组合数公式的应用,关键是公式的选择.

设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

【反馈练习 学会应用】

(教师活动)给出练习,学生解答,教师点评.

[课堂练习]课本P99练习第2,5,6题.

[补充练习]

[字幕]1.计算:

2.已知 ,求 .

(学生活动)板演、解答.

设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

【点评矫正 交流提高】

(教师活动)依照学生的板演,给予指正并总结.

补充练习答案:

1.解:原式:

2.解:由题设得

整理化简得 ,

解之,得 或 (因 ,舍去),

所以 ,所求

[字幕]小结:

1.前一个公式主要用于计算具体的组合数,而后一个公式则主要用于对含有字母的式子进行化简和论证.

2.在解含组合数的方程或不等式时,一定要注意组合数的上、下标的限制条件.

(学生活动)交流讨论,总结记录.

设计意图:由“实践——认识——一实践”的认识论,教学时抓住“学习—一练习——反馈———小结”这些环节,使教学目标得以强化和落实.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

说明(1)对一类元素不太多而利用排列或组合计算公式计算比较复杂,且容易重复遗漏计算的排列组合问题,常可采用直接分类后用加法原理进行计算,如本例采用解法一的做法.

(2)设集合 ,如果S中元素的一个排列 满足

高中数学教案大全2

一 教材分析

本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的内容,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

二 教法

根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点

三 学法:

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

四 教学过程

第一:创设情景,大概用2分钟

第二:实践探究,形成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1简单,结果为解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△ABC中,已知下列条件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

学生板演,老师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

五 板书设计

板书设计可以让学生一目了然本节课所学的知识,证明正弦定理的方法以及正弦定理可以解决的两类问题。

高中数学教案大全3

一、教学内容分析

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

二、教学目标设计

1.理解组合的意义,掌握组合数的计算公式;

2.能正确认识组合与排列的联系与区别

3.通过练习与训练体验并初步掌握组合数的计算公式

三、教学重点及难点

组合概念的理解和组合数公式;组合与排列的区别.

四、教学用具准备

多媒体设备

五、教学流程设计



六、教学过程设计

一、 复习引入

1.复习

我们在前几节中学习了排列、排列数以及排列数公式

定 义

特 点

相同排列

公 式



排 列























 以上由学生口答.

2.引入

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

这是一个排列问题 

若改为:构成的线段有几条?则为 ,

其实亦可用另一种方法解决,这就是组合.

二、学习新课

探究性质

1. 组合定义: P16

一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

【说明】:⑴不同元素; ⑵“只取不排”——无序性;

⑶相同组合:元素相同.

2.组合数定义:

从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.

如:引入中的例子可表示为 

== 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有种选法;

第二步,将选出的2个点做一个排列,有种次序;

根据乘法原理,共有·= 所以

·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断

·这个公式叫组合数公式

3.组合数公式:

如= =

用计算器求  、  、  、 

可发现= =

由此猜想: 

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一 一对应”的.

证明:∵

又 ,∴

当m=n时,

此性质作用:当时,计算可变为计算,能够使运算简化.

4. 组合数性质:

1、

2、=  

可解释为:从这n 1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:





得证.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

2.例题分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、应用题:

有15本不同的书,其中6本是数学书,问:

分给甲4本,且都不是数学书;

略解:(1)

3.问题拓展

例3.题设同例2:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、课堂小结

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

四、作业布置

(略)

七、教学设计说明

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.


高中数学教案大全相关文章:

★ 高中数学教案范文模板

★ 高中数学教案模板设计

★ 精选高中数学教案优秀范文

★ 高中数学教案设计模板

★ 关于高中必修1数学教案优秀范文合集大全

★ 新课标高中数学教案模板

★ 高一数学优秀教案模板

★ 人教版高一数学必修一教案模板

★ 高一数学必修一教案模板

★ 高一数学上册教案模板

221381
领取福利

微信扫码领取福利

微信扫码分享