欢迎访问七七范文网!

小学生等差数列的教案

安卓范文 分享 时间: 加入收藏 我要投稿 点赞

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用.等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广.同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法.一起来看看小学生等差数列的教案吧!欢迎查阅!

等差数列的教案1

教学目标:1、使学生进一步地明确等差(比)数列、等差(比)中顷的概念;

2、使学生进一步地熟练地掌握等差(比)数列的通项公式及推导公式;

3、使学生较灵活地应用等差(比)数列的定义及性质解决一些相关问题。

教学重点:等差(比)数列的定义、通项公式、性质的理解与应用。

教学难点:灵活应用等差(比)数列的定义及性质解决一些相关的问题。

教学准备:利用自习将思考题(一)(二)发放给学生,让他们先思考,教师解答学生在思考过程中出现的问题。

课 型:专题复习课。

时间安排:45’×2

教学过程:

第一课时

一、回顾等差数列的有关基础知识

教 法:1、指名学生回答等差数列的概念,等差中顷,通项公式,前几项求和公式。

2、教师点评,师生达成共识。

二、领悟“思考题(一)”

教 法:1、以拖火车的形式指名学生回答思考题(一)的4个问题。

2、教师点评,师生达成共识。

⑴由思考1还可以得到这样的结论,在等差数列{an}中,

m+n

若 =k,则am+an=2ak(m,n,k∈N_)与性质:

在等差数列{an}中m+n=p+q→am+an=ap+aq(m,n,p,q∈N_)是一致的)。

⑵由思考题2还可以得到这样的变式:①an=am+(n—m)d或am=an+(m—n)d

an—a1

②d=

n—1

⑶由思考题3、4可以得到这样的性质:若数列{an}为等差数列,其前几项和为Sn,则有如下性质:Sn,S2n—Sn,S3n—S2n……也成等差数列,公差为nd2。

三、学生操练

教 法:1、指名学生板演,其余学生思考,教师巡回指导,着重关注学困生。

2、教师点评,师生达成共识:巧妙地应用等差数列的性质(或通项公式的变形式)求解,能简化解题过程。

四、布置作业:1、第6、7题。 2、思考题(二)

第二课时

一、回顾等比数列的.有关基础知识

教 法:1、指名学生回答“等比数列的概念,等比中项,通项公式,前n项求和公式”。

2、教师点评,师生达成共识。

等差数列的教案2

【教学目标】

1.知识目标:理解等差数列定义,掌握等差数列的通项公式.

2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力.

3.情感目标:通过对等差数列的研究,使学生明确等差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.

【教学重点】

①等差数列的概念;②等差数列的通项公式的推导过程及应用.

【教学难点】

①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.

【学情分析】

我所教学的学生是我校高一(10)班的学生(平行班学生),经过快一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

【设计思路】

1.教法

①诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

用多种方法对等差数列的通项公式进行推导.

在引导分析时,留出“空白”,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清.

等差数列的教案3

1、通过本节课的学习使学生理解并掌握等差数列的概念,能用定义判断一个数列是否为等差数列。

2、引导学生了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,能在解题中灵活应用,初步引入“数学建模”的思想方法并能运用;并在此过程中培养学生观察、分析、归纳、推理的能力。

3、在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

三、教学重难点

重点:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

难点:

①理解等差数列“等差”的特点及通项公式的含义。

②理解等差数列是一种函数模型。

四、学习者分析

普通高中学生经过一年的高中的学习生活,已经慢慢习惯的高中的学习氛围,大部分学生知识经验已较为丰富,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力。但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

五、教学策略选择与设计

结合本节课的特点,我设计了从教法、学法两种方法对等差数列的通项公式进行推导,让学生更好的理解。通过引入实例来启发学生,挺高学生的学习兴趣,是学生更加形象、愉快的去学习这堂课。下面是我教学设计:

1.教法

⑴诱导思维法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

⑵分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

⑶讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

六、教学资源与工具设计

(一)学习环境:多媒体教室

(二)用到的资源:

1 查找有关等差数列的实例

2 写出上课要提到的问题

3 制作相关PPT课件

七、教学过程

教学环境 教学内容与

教师活动 学生活动 设计意图或依据 情境导入

在南北朝时期《张邱建算经》中,有一道题“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金 四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更 给,问各得金几何,及未到三人复应得金几何“。 这个问题该怎样解决呢?

由学生观察分析并得出答案: 在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,___,___,___,___,?

水库的管理人员为了保证优质鱼 类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位 为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

思考:同学们观察一下上面的这两个数列: 0,5,10,15,20, ① 18,15.5,13,10.5,8,5.5 ② 看这些数列有什么共同特点呢?

倾听和观察分析,发表各自的意见。


小学生等差数列的教案相关文章:

★ 小学教学教案模板范文合集大全

★ 关于正方体的教学过程教案有范文大全

★ 高二数学等差数列知识点归纳

221381
领取福利

微信扫码领取福利

微信扫码分享